Pace University

Digital Commons@Pace

Ivan G. Seidenberg School of Computer Science

CSIS Technical Reports and Information Systems

4-1-2006

Implementation of Graphs Using java.util Part Two:
Weighted Graphs, Spanning Trees, and Shortest
Paths

Nicholas J. De Lillo

Pace University

Follow this and additional works at: http://digitalcommons.pace.edu/csis_tech reports

Recommended Citation
De Lillo, Nicholas J., "Implementation of Graphs Using java.util Part Two: Weighted Graphs, Spanning Trees, and Shortest Paths"

(2006). CSIS Technical Reports. Paper 25.
http://digitalcommons.pace.edu/csis_tech_reports/25

This Article is brought to you for free and open access by the Ivan G. Seidenberg School of Computer Science and Information Systems at
Digital Commons@Pace. It has been accepted for inclusion in CSIS Technical Reports by an authorized administrator of Digital Commons@Pace. For

more information, please contact rracelis@pace.edu.

http://digitalcommons.pace.edu?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.pace.edu/csis_tech_reports?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.pace.edu/csis?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.pace.edu/csis?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.pace.edu/csis_tech_reports?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.pace.edu/csis_tech_reports/25?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rracelis@pace.edu

TECHNICAL REPORT

Number 225 April, 2006

Implementation of Graphs Using java.util
Part Two: Weighted Graphs, Spanning Trees, and Shortest Paths

Nicholas J. De Lillo

RACE

UNIVYERSITY
IVAN G. SEIDENBERG
SCHOOL OF COMPUTER SCIENCE
AND INFORMATION SYSTEMS

SCHOOL OF COMPUTER SCIENCE AND INFORMATION SYSTEMS

The earlier part of this two-part presentation appeared
as the March 2006 issue of Technical Reports, number 224.

Nicholas J. De Lillo is Professor of Mathematics and Computer Science
at Manhattan College where he has taught courses in computer science,
computer engineering, and software engineering at both the undergraduate and
graduate levels for over thirty years. In addition, Professor De Lillo regularly
teaches courses in the masters program in computer science here at Pace. He is
also on the Editorial Board of Technical Reports.

Professor De Lillo is the author of numerous research papers and textbooks in
mathematics and computer science. The texts include Advanced Calculus with
Applications (1982); Computability with Pascal, co-authored with

John S. Mallozzi (1984); A First Course in Computer Science with Ada (1993);
Data Structures with C++, co-authored with John S. Mallozzi (1997);
Obiject-Oriented Design in C++ Using the Standard Template Library (2002);
and Object-Oriented Design in Java Using java_ util (2004).

Professor De Lillo holds a B.S. in mathematics from Manhattan College,
an M.A. in mathematics from Fordham University, and the Ph.D. in mathematics
from New York University, where he was a student of Martin Davis's.

IMPLEMENTATION OF GRAPHS USING java.util
Part Two: Weighted Graphs, Spanning Trees, and Shortest Paths

Nicholas J. De Lillo
Department of Mathematics and Computer Science
Manhattan College
Riverdale, New York 10471

Abstract

This paper continues the discussion of the implementation of graphs using Java 5.0
begun in [1], with special emphasis on weighted graphs, both directed and undirected, as
well as the treatment of minimal spanning trees and shortest paths. Again, the emphasis
will be on implementing a number of the key results in this regard, using the predefined
List interface and the LinkedList implementation class from the Java Collections
hierarchy.

1. Weighted Graphs.

Let 6 be a digraph. If each edge of G has a third component whose value is a
nonnegative integer, called the cost or weight of that edge, the resulting digraph is called
a weighted digraph. The following is an example of a weighted digraph, where the
weight w of each edge is represented as the third component of each member of E, the set
of weighted edges of the weighted digraph.

Example 1: Suppose we define a weighted digraph with vertices v = (Ao, Ay, Ay, A5, Ay}
and edges E = { (AOIAII 2) ’ (AOIA4I 1) ’ (AllAzl 4) ’ (A2IA0I 2) ’ (AZIAZI 1) ’ (A4IAOI 2) }-
We may illustrate this using (Figure 1).

Ay

Weighted digraphs have a number of important applications. For example, these may
be used to display the mileage between cities, or the travel time from one point to
another, or the cost of executing a move in a game of chess. Let P be a path from one
vertex u of ¢ to another vertex v of G. Then the weight of the path from u to v is the
sum of the weights of any set of weighted edges that begin at u and terminates at v. For
example, if we consider the weighted digraph described in (Figure 11.14) with u = A, and
v = B,, then the weight of the path from u to v may be given by the sum of the weights
of the edges (u,A;,2) = (Ro,Ay,2), (A,Az,4) = (A, v,4) or 6. However, there is
another path fromu = A, tov = A, givenby (u,3;,2) =
(Bos By, 2) s (By, B2, 4), (By, By, 1) = (Bg,v,1) with weight 7, and another path given by
(u,B1,2) = (Ro,A1,2), (A1, R2,4), (A2, R0, 2), (Bo, By, 1), (A Ry, 2), (Ros A1, 2),

(A, B2 4) = (B, v,4) withweight 17. Clearly, there are many other (indeed, in this
case, an infinite number of) weighted paths fromu = 2, tov = A,.

An important and related practical problem involving weighted digraphs to solve is to
determine the path between two vertices with the smallest weight. This is commonly
called the Shortest Path Problem, whose solution we will discuss later in this chapter,
and is given by an algorithm due to E. W. Dijkstra.'

For the moment, we consider the problem of how to represent a weighted digraph
internally. Here we use very natural extensions of the internal representation of digraphs
using adjacency matrices and adjacency lists. An adjacency matrix representation of a
weighted digraph is given by a two-dimensional array of values w(i, j1, where

weight of the directed edge beginning at A; and terminating
at Ay, if such a directed edge exists;
Wii, 3] =

o, if no such edge exists.

Thus the weighted digraph of (Figure 1) has the associated adjacency matrix

! Dijkstra, E. W., “A Note on Two Problems in Connection with Graphs,” Numerische Mathematik 1
(1959), 269-271.

(column index)

0 1 2 3 4
0 @ 2) ® 1
1 ® o0 4 © ©
(row index)
2 2 [+o) 1 @ a
3 0 o] [+) [+ o} 0
4 2 00 Vo) 0 00
(Figure 2)

Similarly, the adjacency list representation of a weighted digraph ¢ =
{Ao,A;, -, Anq} is aone-dimensional array of n components, each of which is a
reference to a linearly linked list or to null. Each of the nodes on the list contains an
additional component defining the weight of the directed edge. For example, if

contains the weighted edge (A, A;, w), then component i will contain a reference to a
node given by

J|ow | | . reference to another node with
the same internal structure or null

To illustrate this, the adjacency list of the weighted digraph of (Figure 1) is given by

[0] ———— 112 41 —~—— null
—t—> 2| 4
(1] —+— null
1 50} 211 | 1 __, null
[2]
(3] T > null
(4] — |0} 2] 1 __y null
(Figure 3)

How may we implement this in Java using an object-oriented design? We will define
a new class called weightedDigraph, whose objects are weighted digraphs whose design
follows the above adjacency list representation.

2. Implementation Details for Weighted Digraphs.

Following Section 7 of De Lillo?, we will describe an implementation of weighted
digraphs in Java using adjacency lists. To this end, we first describe a vertex of a
weighted digraph as an object of the weightedVertex class, defined as

class weightedVertex
{
// Instance variables.
private int dest;
private int weight;
// Constructor. Constructs a weighted vertex object whose
// destination vertex is given by value of the first parameter
// and whose weight is given by the value of the second
// parameter.
public weightedVertex(int d,int wt)
{
dest = d;
weight = wt;

2 De Lillo, N. J., “Implementation of Graphs Using java.util, Part One,” submitted.

} // terminates text of constructor.
// Instance methods.

// Retrieves weight of weighted vertex
public int getWeight ()
{
return weight;
} // terminates text of getWeight ()
// Retrieves value of destination vertex
public int getVertex()
{

return dest;
} // terminates text of getVertex()
} // terminates text of weightedVertex class.

This implementation follows the description given in Section 1 of this paper, where
each node in the list is viewed as containing an info component of the weightedvertex
type. We also define an exception class used for handling exceptions that may arise
using certain instance methods defined within the weightedbigraph class. To this end,
we include the weightedDigraphException class, whose code is given by

// weightedDigraphException class
class weightedDigraphException extends RuntimeException
{
// Constructor
public weightedDigraphException(String str)
{
super (str);
} // terminates text of constructor.
} // terminates text of weightedDigraphException class.

We continue the description of the implementation details by describing an interface
for the weightedDigraph class. Again, observe that most of the instance methods
described in this interface are the counterparts for weighted digraphs of corresponding
instance methods of the Digraph class.

public interface weightedDigraphlnterface

{

// Tests whether the current weighted digraph is empty.
// Returns true if so, false if not.

public boolean isEmpty();

// Returns the number of distinct vertices in the
// current weighted digraph.
public int size();

// Retrieves sum of the weights of all of the edges of
// the current weighted digraph.
public int totalWeight();

// Returns whether v is joined to w by a weighted edge.
// Returns true if so, false if not.
public boolean isAdjacent (weightedvVertex v,weightedVertex w);

// Inserts vertex into weighted digraph.

// Inserts a new vertex if that vertex is not already present

// and raises an exception if no vertex is inserted, since it is
// already a vertex of the current weighted digraph.

public void insertVertex(weightedVertex p);

// Inserts edge from v to w.

// Constructs weighted edge from v to w if no such edge is

// currently present, and throws an exception if otherwise.

// Precondition: v,w are vertices in the current weighted digraph.
public void insertEdge (weightedVertex v,weightedVertex w);

// Removes vertex from current weighted digraph if present, along with
// all incident edges. Raises an exception if that vertex is not

// present in the current weighted digraph.

public void eraseVertex(weightedVertex v);

// Removes weighted edge from v to w if currently present in
// weighted digraph, and eliminates the weight of that edge.
// Precondition: v, w are vertices in the current weighted
// digraph.

public void eraseEdge (weightedVertex v,weightedVertex w);

// Outputs specifications of the current weighted digraph.
public void output();

} // terminates text of weightedDigraphInterface

We now describe the design of the instance methods and a description of the
necessary instance variables of the implementation of weightedDigraphInterface.
The instance variables, with two notable exceptions, are similar to those defined for the
Digraph class.

// Gives the maximum possible number of vertices in any
// weighted digraph.
protected int ArraySize = 10;

// Number of vertices in the current weighted digraph.
protected int currSize;

// Holds the total weight of all of the edges of the current
// weighted graph.
protected int currWeight;

// Array holding the weighted vertices of the current
// weighted digraph.
protected boolean weightedVertices[] = new boolean{ArraySize];

// Tests whether the current vertex is visited in some traversal.
protected boolean isVisited[] = new boolean[ArraySize];

// Holds weighted edges in the current weighted digraph.
protected LinkedList adjList[] =

new LinkedList[ArraySize];

// Holds vertices in the current weighted digraph.

protected Set<Integer> vertexSet = new TreeSet<Integer>();

The vertexSet instance variable holds a number of Integer values, none of which
are repeated. All we are concerned with here is that every vertex is accounted for, so
long as it appears in the weighted digraph.

The constructor constructs an initially empty Digraph object. This is represented in
the form of an empty adjacency list, with initial size and total weight equal to zero, and
containing no weighted vertices. As a result, each component of the weightedvertices

and isvisited arrays is initialized as false. The formal code for the constructor is
given by

// Constructor. Constructs empty weightedDigraph object
// represented by an empty adjacency list, with current
// size and total weight zero, and with no vertices.
// Hence, each component of the weightedVertices and
// isVisited arrays is initialized as false.
public weightedbDigraph()
{
currxSize = 0;
currWeight = 0;
for(int index = 0; index < ArraySize; ++index)
{
weightedVertices[index]= false;
isVisited[index] = false;
adjList [index] = new LinkedList();
} // terminates text of for-loop
} // terminates text of constructor.

The instance methods isEmpty () and size() are defined and coded in exactly the

same way as in Digraph. The method totalweight () applies exclusively to weighted
digraphs, and is implemented as

// Retrieves sum of the weights of all of the edges of
// the current weighted digraph.
public int totalWeight ()
{
return currWeight;
} // terminates text of totalWeight().

The coding of the insertVertex method for weighted digraphs is the direct analog
of its counterpart for (unweighted) digraphs. All that is done is the boolean value of the
appropriate component of the weightedvertices array is changed from false to true.
Otherwise, a weightedDigraphException exception is thrown.

// Inserts a new vertex if that vertex is not already present

// and raises an exception if no vertex is inserted, since it is
// already a vertex of the current weighted digraph.

public void insertVertex(weightedVertex p)

{

// Vertex is not in present digraph.

// Perform legitimate insert operation.
if (!weightedVertices[p.getVertex()])
{

++currSize;
weightedVertices[p.getVertex()] = true;
vertexSet.add(new Integer(p.getVertex()));

} // terminates text of if-clause
else if((currSize < ArraySize) && weightedVertices([p.getVertex()})
// Vector is in current digraph. Throw an exception.

throw new weightedDigraphException("Vertex already in weighed

digraph"):

else // overflow

throw new weightedDigraphException("Overflow -- weighted digraph
is full");

} // terminates text of insertVertex

The only difference between this version of insertvertex and its counterpart for
Digraph is that the subscript of the vertex is computed in this new version by invoking
the getvertex () method from the weightedvertex class.

The insertEdge method performs two operations. One is the actual insertion of the
weighted edge in the current weighted digraph, assuming that the digraph does not
already contain a weighted edge joining these vertices. The second accumulates the total
weight of all of the edges by adding the new weight to the existing accumulated weight.

// Inserts a weighted edge from v to w. Throws an exception
// if no edge is constructed.
// Precondition: v, w are vertices of the current weighted
// digraph, and w is not currently joined to v by a
// weighted edge.
public void insertEdge(weightedVertex v,weightedVertex w)

{

// v, w are vertices of the current weighted digraph, and w is
// not currently joined to v by a weighted edge.

// Insert new weighted edge and accumulate total weight of

// weighted digraph.

if (weightedVertices[v.getVertex()] && weightedVertices([w.getVertex()]

&& !(adjList[v.getVertex()].contains(w}))

{

adjlist(v.getVertex()].add(w);

currWeight += w.getWeight ();

} // terminates text of if-clause

else // if any other condition applies, throw new

// weightedDigraphException
throw new weightedDigraphException({"Illegal attempt to join weighted
edge.”);
} // terminates text of insertEdge().

The next method returns a boolean value, and tests whether the weighted vertex v is
joined to the weighted vertex w by an edge. The method returns true if so, and false
if not.

// Returns whether v is joined to w by a weighted edge.
// Returns true if so, false if not.

public boolean isAdjacent (weightedVertex v,weightedVertex w)
{
return (adjlList[v.getVertex()].contains (w)
[fadjList [w.getVertex()].contains(v})};
} // terminates text of isAdjacent().

The next method is the counterpart for weighted digraphs of eraseEdge of
(unweighted) digraphs. The key difference now is that weighted edges are involved: the
weight of the edge removed is deducted from the total weight of the digraph.

// Removes weighted edge from v to w, if present in the current
// weighted digraph.
// Precondition: v, w are vertices in the current weighted digraph,
// and there is a weighted edge from v to w.
public void eraseEdge (weightedVertex v,weightedVertex w)
{

// There is a weighted edge from v to w, and each of v, w

// is a weighted vertex in the current weighted digraph.

if (isAdjacent (v,w) && weightedVertices[v.getVertex()]

&& weightedVertices{w.getVertex()])

{

adjList[v.getVertex()].remove (w);

currWeight -= w.getWeight();

} // terminates text of if-clause

else // throw a weightedDigraphException exception

throw new weightedDigraphException("Edge removal aborted");
} // terminates text of eraseEdge().

The coding of the method erasevertex () is left as an exercise. It is the analog for
weighted digraphs of erasevertex () for (unweighted) digraphs. The idea is to remove
all edges that are incident to the weighted vertex to be removed. This implies that if v is
the vertex to be removed, then each weighted edge that is adjacent to v, along with the
weight attached to that edge, must be removed. In addition,

weightedVertices[v.getVertex ()] hasto be set equal to false.

The final instance method to be considered is output (), used to output the
specifications of the current weighted digraph object. This includes outputting the
vertices, edges, and the total weight of the current object.

// Output specifications of current weighted digraph.
public void output ()
{
System.out.println("Vertices are:" + vertexSet);
//for(int w = 0; w < ArraySize; ++w)
// if (weightedVertices[w])
// System.out.print(w +" ");
// Terminates text of for-loop.
System.out.println();
System.out.println("Total weight is " + totalWeight());
if (isEmpty())
System.out.println("Current weighted digraph is empty."):;
else
System.out.println("Current weighted digraph has "

+ size() + " vertices");
} // Terminates text of output/()

If we then execute the code sequence

weightedDigraph wDgraphl = new weightedDigraph();
weightedVertex a0 = new weightedVertex(0,0);
wDgraphl.insertVertex(a0);

weightedVertex al = new weightedVertex(1,2);
wDgraphl.insertVertex(al);
wDgraphl.insertEdge (a0, al);

weightedVertex a2 = new weightedVertex(2,4):
wDgraphl.insertVertex(a2);
wDgraphl.insertEdge(al, a2);
wDgraphl.insertEdge (a2, a0);

weightedVertex a3 = new weightedVertex(0,2);
weightedVertex a4 new weightedVertex(1,4);
weightedVertex a5 = new weightedVertex(4,2);
wDgraphl.insertVertex(a5);
wDgraphl.insertEdge (a5,a0);
wDgraphl.output () ;

the output is

Vertices are [0, 1, 2, 4]
Total weight is 8
Current weighted digraph has 4 vertices

The start vertex is 0. Since it is the first vertex inserted, there is no second vertex
available to form an edge. We must nevertheless assign a weight component for this
vertex which is consistent with maintaining the total weight. Therefore, we assign a
weight of zero; consequently, the initial construction of the start vertex is

weightedVertex a0 = new weightedVertex(0,0);
3. Spanning Trees.

Letc = (v,E) be an undirected graph. Then the graph® = (v’,E") iscalleda
subgraph of G if v/ cv and E’ cE, that is, if every vertex of H is also a vertex of ¢ and
every edge of H is also an edge of . For example, the graph described in (Figure 4) is a
subgraph of the graph of (Figure 5):

10

Ao

" \ Ok

O

(Figure 4)

Al A4

A
(Figure 5)

A subgraph of G that contains all of the vertices of G and is a tree is called a spanning
tree of G. For example, suppose G is the connected graph described in (Figure 6(a)):

Ay

A;

Ay

A,

A,
(Figure 6(a))

Then each of the following is a spanning tree for G:

Ay AO

Ay
. O NS

A A, Ay A,y

(Figure 6(b)) (Figure 6(c))

Finding a spanning tree for a connected graph has important applications, since such
trees contain the smallest number of possible edges, and still retain the connection links
between all of the vertices of the underlying graph. Specifically, if the graph is
connected and has n vertices, then we can show that the spanning tree contains n - 1
edges. You may verify this for the graph of (Figure 6(a)) and the spanning trees of (Figure
6(b)) and (Figure 6(c)).

Suppose we turn to weighted connected graphs. These have very important
applications, since, for example, such graphs may model maintenance costs between
nodes in a communications network, or the travel costs between cities. In the
implementation of weighted digraphs discussed in Section 2, we showed how we may
accumulate the weight (that is, the cost) for every edge in a weighted digraph. It is not
difficult to describe a similar operation for accumulating the weight in an undirected
graph. We can then determine a spanning tree that yields a minimum accumulated
weight. The spanning tree with the least weight is called a minimal spanning tree for that
graph.

Suppose G = (V,E) is a connected weighted graph. How do we find a minimal
spanning tree for G? There are two algorithms that produce a minimal spanning tree:
Prim’s algorithm and Kruskal’s algorithm. We begin by looking at Prim’s algorithm.?
We begin by thinking of v as subdivided into two disjoint subsets: In (for “Inside”) =
those elements of v already included in the minimal spanning tree constructed so far, and
out (for “Outside”) = those elements in v not appearing in the minimal spanning tree
constructed so far. Initially, 1n is the set consisting of only the start vertex, and out is
the set consisting of the remaining elements of v. The objective is to add new elements to
In as they are removed from out, in succession, by including a new edge joining any
element of In to an element of out containing the least possible weight. The process
terminates when In = v and out = @, the empty set. The set v then contains the
vertices of the minimal spanning tree, and the edges that are adjoined at each stage
represent the edges of the minimal spanning tree.

Prim’s algorithm is an example of a greedy algorithm, namely, an algorithm that is
based on the selection of a finite collection of objects to join to an initial collection in
increments by iteration. Each cycle of the iteration always chooses some object that
minimizes some cost function. In the case of Prim’s algorithm, the cost function is
defined as a function that joins an element of 1n to an element of out by an edge of
minimal weight.

Example 2. Suppose we consider the weighted graph of (Figure 7):

3 Prim, R. C., “Shortest Connection Networks and Some Generalizations,” Bell System Technical Journal,
Vol. 36 (1957), pp. 1389-1401.

13

Ay

(Figure 7)

Begin with In = {A,},Out = {A;, A, A5, A}, and E’ = current set of edges of the
minimal spanning tree = &.

(1) The edges connected to A,: (Rg, A;) has weight 2,

(Ro,A;) has weight 4,

(B, A,) has weight 3.
Thus, add A, to In, and add (a,,a,) toE’. The minimal spanning tree so far consists
of

A,

Ay

(Figure 8(a))
(2) Add edges connecting A, to previous edges not selected:
(A,,A;) has weight 4,
(Ao, A;) has weight ¢,

(Bo, A,) has weight 3.

Thus, add 2, to In and (A, A,) to E’. The minimal spanning tree so far consists of

14

Ay Ay

(Figure 8(b))

(3) Add edges containing A, to previous edges not selected:

(A,, B;) has weight 1,
(A1, B,) has weight 4,
(Ao, A;) has weight 4.

Thus, add A, to In and (A,,R;) to E’. The minimal spanning tree so far consists of

Ao

O
A O OA4

A;
(Figure 8(c))
(4) Add edges containing A, to previous edges not selected:

(A1, A;) has weight 4,
(Ro,A;) has weight 4.

Thus, add A; to In and (A, A;) to E’. Since now In = v, the desired minimal spanning
tree is

15

Ay A3 Ay

(Figure 8(d))

Prim’s algorithm may be designed with the connected weighted graph G as the only
parameter. The algorithm begins by constructing an initially empty tree minsp* and an
initially empty priority queue proueue. The role of minsp will be to keep track of that
portion of the minimal spanning tree constructed so far, and proueue will store the edges
of the graph in order of increasing weight. In addition, a set of vertices 1n will store the
number of vertices of G that are currently in minsp. Initially, 1n will consist only of a,,
the designated start vertex of . The algorithm may then be written as

Initialize minSp as empty;
Initialize prQueue as empty;
Initialize In = [Ro);

Sef currVertex = Ay

while(V != In) // V is the set of all vertices of G
{

Insert all edges containing currvVertex into prQueue;
// This insertion may be done using the for-loop
// for (all edges e containing currVertex)
/4 prQueue.add(e) ;
// Then choose edge at front of current prQueue
e = prQueue.front();
// Remove edge from prQueue
prQueue.remove () ;
// Insert e as new edge of minSp
minSp.insert (e);
// Add currvertex o In
In.add{currVertex);
} // terminates text of while-loop.

// At this point v == In andminSp is the desired

* Note that minSp is not necessarily a binary tree.

16

// minimal spanning tree. Return minSp.
return minSp;

We illustrate the algorithm on the graph of Example 2. Initially, minSp and prQueue
are empty and In contains only A,, the start vertex of G. See (Figure 9(a)):

prQueue minSp In
\ Bo
< (empty) 44—
null
(Figure 9(a))
Processing enters the while-loop for the first time, since v t= In. Thus, each of

(Ao, A1), (Bo,A3), (Ag,A,) isaddedto proueue in the order from front to rear as
(Ao, Aq) (Ao, Ayq) (Ao, A3)
Thene = (n,,A;) isremoved from prQueue, currvertex issetatAa,, e is inserted

into minSp, and the value of currvertex isadded to 1n, yielding the results indicated
in (Figure 9(b)):

prQueue minSp In

O . Ay A

<« (Ro,A1) (Ag,A3) g—o

2
(front) (rear)
Ay
(Figure 9(b))
Now v != In is still true, so processing re-enters the while-loop. Here we add any

new edges containing A, into proueue. This involves a single edge (a,,A,). When this
edge is inserted into its proper position, proueue is read from front to rear as

(Ag, A,) (Ag, A3) (A1, Ay)

17

Sete = (A, A,), remove e from prQueue, set currvertex = A, insert e into
minSp, and the value of currvertex is added to In, producing the result seen in (Figure

9(c)):

prQueue minSp In
OAO Ay A A,

o {(Bo/R3) (A1, B;) —

2 3

(front) (rear)
A By
(Figure 9(c))
This completes another cycle of the while-loop. Since v = 1In is still true,

processing re-enters the while-loop. Since the value of currvertex is A,, we add all
new edges containing A, to proueue. This involves the single edge (a,, A.), and thus
prQueue reads from front to rear as

(Aq,Az) (Ro, A3) (A1, A2)

Sete = (A, A,),remove e from prQueue, set currValue = A,, insert e into minSp,
and add currvalue to In, producing the results seen in (Figure 9(d)):

prQueue minSp In
OAO Ay Ay A, A;
< (Bo,R3) (A1,A;) —
2 3
(front) (rear)
Ay Ay
1
A
(Figure 9(d))

18

This completes the execution of another cycle of the while-loop. Since v != In still
holds, processing re-enters the while-loop. But now since there is no edge in G joining
A, t0 A;, prQueue does not change. Instead, e becomes (Ao, As) and is removed from
proueue, (Bg,A;) is added to minsSp, and currvertex = A; is added to In, producing
the results of (Figure 9(e)):

prQueue minSp In
QAO Ay A Ay A A
o (AL R)
2 3
(front) (rear) 4
A, Ay
Aj
O 1
A,
(Figure 9(e))

This completes another cycle of the while-loop. At this point,v != In is false;
therefore, control passes to the return of the current version of minsp. This is the desired
minimal spanning tree of G.

To analyze Prim’s algorithm, we note that its implementation involves an outer
while-loop that executes n times, where n is V.size (), the number of vertices of G.
But each such cycle involves an inner for-loop, which executes once for each edge
containing the current value of currvertex. If we assume that there are m edges, where
m < n - 1 since G is connected, we conclude that Prim’s algorithm is or order 0 (m*n).

Kruskal’s algorithm® is another example of a greedy algorithm. It takes a completely
different approach in constructing the minimal spanning tree of G by joining subtrees and
edges of G until two subtrees remain. These are then joined by an edge to form the
minimal spanning tree. To illustrate Kruskal’s algorithm, we again consider the graph of
Example 2, and begin by observing that each vertex of G may be viewed as a subtree
with no edges, as in (Figure 10(a)):

5 Kruskal, Joseph B., “On the Shortest Spanning Tree of a Graph and the Traveling Salesman Problem,”
Proceedings of the American Mathematical Society, Vol. 7 (1956), pp. 48-50.

19

By A A, Az Ay

O O O O O

(Figure 10(a))

Configurations of weighted subtrees are commonly called (weighted) forests. Order
the edges of G by inserting all of the edges in a priority queue proueue in order of
increasing weight (see (Figure 10(b)):

prQueue
< (B Ry) (Ros A1) (RorAyg) (Ror A3) (A1, Rz) —
(front) (rear)

(Figure 10(b))

Remove edge (A,,R,) from proQueue, creating a new forest as described in (Figure
10(c)):

A,

O O A, O A, OA3

A,

(Figure 10(c))
with proueue now given by
prQueue
—— (Bo,A;) (RosAyg) (Agr A3) {(A1,A2) 4—
(front) (rear)
(Figure 10(d))

20

Remove (A,,A,) from prQueue, creating a new forest

A;

g © o

(Figure 10(e))

with prQueue given by

prQueue
44— (AOIAd) (AOIA3) (AIIAZ) e
(front) (rear)

(Figure 10(f))

Remove edge (A,,A,) from proueue, creating a new forest

N

A, O A, B,
O

A

(Figure 10(g))

with accompanying prQueue

21

prQueue

4 (Ay, A3) (A;,B;) *—
(front) (rear)
(Figure 10(h))

Now remove edge (A, A;) from prQueue, creating the forest consisting of the single
weighted tree

A3

Ay

O A
1
O 2
(Figure 10(l))
This is the desired minimal spanning tree for G.

How do we express Kruskal’s algorithm in pseudocode? As in Prim’s algorithm, G is
passed as the only parameter. However, unlike Prim’s algorithm, minsp is initialized as
the forest whose members are just the elements of v, and prQueue is initialized as the
members of E, ordered according to increasing weight. The algorithm continues
execution by successively removing weighted edges from prQueue, joining these among
the members of minSp until minSp contains exactly one tree, the desired minimal
spanning tree of . Thus the pseudocode may be expressed as

Initialize minSp = Vv,
Initialize prQueue = E, ordered in order of increasing weight;
// Add new edges from prQueue to members of minSp

// to create a new forest.
for{(int index = 1; index <= E.size() && minSp.size() <= V.size(}) - 1;
++index)
if (prQueue.contains (edge[index])
minSp.add (edge(index]);

22

// terminates text of for-loop

// At this point, all of the remaining edges have been joined
// and minSp consists of a single element. This is the

// minimal spanning tree for G. Return this tree.

return minSp,

The add () method inside the loop is invoked as many times as is necessary to join all
of the existing vertices of ¢ without producing a cycle. That is, as many times as is
necessary so as to maintain members of minSp as trees. This operation is of order o (n),
where n = V.size (), the number of vertices of c. The construction of the initial version
of proueue requires a sort operation of order 0 (m log m), wherem = E.size(), the
number of edges of . Consequently, using the fact thatm < n - 1 (see the Exercises at
the end of this chapter), this yields the following result, estimating the complexity of
Kruskal’s algorithm.

If G is a connected weighted graph with n vertices and m edges, Kruskal’s algorithm
constructs a minimal spanning tree for G, with a complexity of O(m log n).

4. Shortest Paths. Dijkstra’s Algorithm.

A very important and practical application of the theory of weighted graphs involves
finding the shortest path between two vertices. We define the shortest path between two
vertices A; and A; of a weighted graph G to be the path with the least weight between A;
and A;. This may not necessarily be the path with the least number of vertices joining A;
and A,.

There is a greedy algorithm, due to Dijkstra, for finding the shortest path. This
algorithm was referred to earlier in this paper. We describe the algorithm here, and refer
to it as the Shortest Path Algorithm. The solution proposed by Dijkstra involves a design
using a pair of nested loops, and is thus of order o (n?).

The algorithm involves a priority queue proueue of pairs: the first component is a
character string describing a path beginning with the initial vertex and ending with the
vertex described so far toward the destination vertex. The second component of the pair
is the accumulated weight of the path described by the first component. In addition, the
pairs appearing in the priority queue will be arranged in order of increasing weight.

We illustrate this algorithm using the weighted graph ¢ of (Figure 1). Suppose we

wish to determine the shortest path from A, to A,. We begin by initializing proueue by
inserting all edges beginning at a, as in (Figure 11(a)):

23

prQueue

+— (“AA”, 2) (“RoA4", 3) (“RoR3", 4) —

{(front) (rear)

(Figure 11(a))

After this initialization, the pair (“a,A,”,2) is removed from prQueue, and we iterate
over the neighbors of A,. The only other vertex of an edge from a, is a,, and the weight
of that edge is 4. Accumulate the weight of the path A,A;7, to 6, and insert the pair

(“BoAA,”, 6) Into prQueue as shown in (Figure 11(b))

prQueue
<+—— (“AA,”, 3) (“RoA3", 4) (“"RoAjA2",6) ———
(front) (rear)

(Figure 11(b))

Again remove the pair (“a.a,”,3) from the front of prQueue, and iterate over the
neighbors of a,. The vertex a, is a neighbor of a,, and the edge joining A, to A, has a
weight of 1. Accumulate the weight of the path A,a,a, to 4, and insert (“AA,R;", 4)
into prQueue. See (Figure 11(c)).

prQueue
<+ (“AoA3", 4) (“RoAA", 4) {“AoA;A7,6) 44—
(front) (rear)

(Figure 11(c))

Remove (“A,A;”,4) from proueue. Since there is no edge from a; to A,, we do not
insert any pair back into proueue. Since pathCount is zero, the front of the current
prQueue, as depicted in (Figure 11(d)) contains the shortest path.

24

prQueue

< (“RoAqA2", 4) (“RoAA", 6) ¢

(front) (rear)

(Figure 11(d))

We describe a pseudocode version of Dijkstra’s algorithm. To do so, we must make a
number of preliminary observations. First, for ease of computation, we will represent a
vertex of the graph by its integer-valued subscript. For example, the vertex n, will be
represented by 0, the vertex A, by 1, and so on. Secondly, we introduce the int-valued
variable numPaths, whose current value is the number of distinct paths from the
designated source vertex to the destination vertex. Indeed, if we consider the weighted
graph of (Figure 7), and if the source vertex is 0 (for a,) and if the destination vertex is 2
(for a,), then numPaths is 2.

We also define a Pair class whose objects represent pairs of the form
(path, weight), where path isa String variable whose characters are integer-valued
digits describing a path from the source vertex to some vertex of the graph, and where
weight is the integer-valued weight of that path. As an example, the Path object
(*012”,6) defines the path a,n,a, with total weight 6 from the weighted graph
described in (Figure 7). The formal class definition of Pair is

public class Pair

{

// Constructor

public Pair(String pth,int wt)

{

path = pth;

weight = wt;

} // terminates text of constructor
// Instance methods

// Retrieve path

public String getPath({()

{

return path;

} // terminates text of getPath
// Returns weight of current Pair object
public int getWeight ()

{

return weight;

} // terminates text of getWeight
// Instance variables

private String path;

private int weight;

}// terminates text of Pair class

25

In addition, we introduce a boolean-valued method edgeExists defined for any two
vertices u, v by

true, if there is an edge of the graph joining u,v
edgeExists (u,v) =
false, if not.

Thus, if we refer to the weighted graph of (Figure 7), edgeExists (4,2) = true, and
edgeExists(3,2) = false. We mayimplement edgeExists using either the
adjacency matrix representation of the weighted graph (see (Figure 2)) or the adjacency
list representation of the weighted graph (see (Figure 3)).

Finally, we define the integer-valued variable numvertices as the variable storing the
number of vertices of the weighted graph.

The pseudocode for Dijkstra’s algorithm may then be expressed as

public Pair getShortestPath(int source,int destination, int numPaths)
{
// pathCount stores the number of paths from source to destination
int pathCount = numPaths;
// Construct priority queue of Pair objects
ArrPriorityQueue<Integer> prQueue = new ArrPriorityQueue<Integer>();®
// Initialize prQueue with all Pair objects representing edges
// joining the designated source vertex to any vertex of the graph
// connected by an edge.
for(int index = 0; index < numVertices;++index)
if (edgeExists (source, index})
prQueue.add(Pair object with first component consisting of edge
represented by a string from source to index, and
second component equal to the weight of that edge);
// Continue path to destination vertex
while (pathCount> 0)
{
// Retrieve front pair stored in prQueue
Pair frontPair = (Pair)prQueue.front();
// Remove that front Pair object
prQueue.remove () ;
for(int index = 0; index < numVertices; ++index)
if (edgeExists(last vertex of frontPair, index))
{
frontPair.path += index converted to String;
frontPair.weight += getWeight (Pair object with first component last
vertex, index, weight);
// Insert new version of frontPair into prQueue
prQueue.add{new Pair(frontPair.path, frontPair.weight));
} // terminates text of if-clause
// also terminates text of for-loop
// Decrement value of pathCount
if (newVertex == destination)

® This can be replaced by the predefined PriorityQueue implementation of Java 5.0.

26

~--pathCount;
} // terminates text of while-loop
// Retrieve Pair object at front of current prQueue
Pair frontPair = (Pair)prQueue.front();
// Remove any unwanted Pair object occupying position at front
// of current prQueue.
if({pathCount == 0) && (last vertex of frontPair != dstination))
prQueue.remove () ;
else // front of prQueue contains desired shortest path
return (Pair)prQueue.front();
// If there is no Pair from source to destination, return null
return null;
} // terminates text of getShortestPath

There is a variant of Dijkstra’s algorithm due to R. W. Floyd,’ that solves the problem
of finding the shortest path between any two vertices in any graph ¢ whose edges have
positive weights. The idea behind the algorithm is very simple, but its complexity is
o(n®) fora graphof n vertices, since three nested loops are needed for its
implementation. The algorithm begins by setting up a two-dimensional array whose
components represent the shortest distance of paths joining the vertices given by the row
and column subscripts. Initially, the components of this array has values given by the
components of the corresponding adjacency matrix representation of the weighted graph.
In the case of a component with an initial value of o, we instead use a large positive
integer value supported by Java’s primitive int type. The algorithm then proceeds by
searching for shorter distances between each pair of vertices. The resulting array then
contains components representing the shortest distance between any vertices of the
weighted graph.

To give a formal description of the algorithm, we define weight [] [] as the array
whose components are the respective weights of the edges of the underlying weighted
graph. We also define shortest[][] as the array whose respective components are the
values of the shortest paths between the associated vertices. Thus, the algorithm may be
expressed as

public void allPairsShortestPaths(int[] [] weight,int (][] shortest)
{
// Initialize shortest array
for (int indexl = 0; indexl < n; ++indexl)
for(int index2 = 0; index2 < n; +t+index2)
shortest [index1l] [index2] = weight[indexl] {index2];
// Find shortest path between any two vertices
for{int indexl = 0; indexl < n; ++indexl)
for(int index2 = 0; index2 < n; ++index2)
for (int index3 = 0; index3 < n; ++index3)
if (shortest[index2] [index1l] + shortest[indexl] [index3]
< shortest[index2] [index3])
shortest [index2] [index3] = shortest[index2] [index1]
+ shortest[indexl] [index3];
} // terminates text of allPairsShortestPaths

" Floyd, R. W., “Algorithm 97: Shortest path,” Communications of the Association for Computing
Machinery, vol. 5, no. 6, 1962, p. 345.

27

The complexity of 0 (n®) is a consequence of the three nested for-loops used to
compute the shortest path between any two vertlces As an example, if we consider the
graph of (Figure 7), weight [1[] is represented as®

0 1 2 3 4

0 10000 2 10000 4 3

1 2 10000 4 10000 10000

2 10000 4 10000 10000 1

3 4 10000 10000 10000 10000

4 3 10000 1 10000 10000
(Figure 12)

The final form of shortest [} [] iS

0 1 2 3 4

0 4 2 4 4 3

1 2 4 4 6 5

2 4 4 2 8 1

3 4 6 8 8 7

4 3 5 1 7 2
(Figure 13)

% Here “«0” is represented by 10000.

28

Bibliography

[1] De Lillo, Nicholas J., “Implementation of Graphs Using java.util, Part One,”
submitted.

[2] Dijkstra, E. W., “A Note on Two Problems in Connection with Graphs,” Numerische
Mathematik 1 (1959), 269-271.

[3] Floyd, R. W., “Algorithm 97: Shortest Path,” Communications of the Association for
Computing Machinery, Vol. 5, No. 6, 345.

[4] Kruskal, Joseph B., “On the Shortest Spanning Tree of a Graph and the Traveling

Salesman Problem,” Proceedings of the American Mathematical Society, Vol. 7 (1956),
48-50.

[5] Prim, R. C., “Shortest Connection Networks and Some Generalizations,” Bell System
Technical Journal, Vol. 36 (1957), 1389-1401.

29

The Ivan G. Seidenberg
School of Computer Science and Information Systems
Pace University

Technical Report Series

EDITORIAL BOARD

Editor:
Allen Stix, Computer Science, Pace--Westchester

Associate Editors:
Constance A. Knapp, Information Systems, Pace--Westchester
Susan M. Merritt, Dean, CSIS--Pace

Members:

Howard S. Blum, Computer Science, Pace--New York

Mary F. Courtney, Computer Science, Pace--Westchester

Nicholas J. DeLillo, Mathematics and Computer Science, Manhattan College
Fred Grossman, Information Systems; Doctor of Professional Studies, Pace--New York and White Plains
Fran Goertzel Gustavson, Information Systems, Pace--Westchester

Joseph F. Malerba, Computer Science, Pace--Westchester

John S. Mallozzi, Computer Information Sciences, lona College

John C. Molluzzo, Information Systems, Pace--New York

Pauline Mosley, Technology Systems, Pace--New York

Narayan S. Murthy, Computer Science, Pace--New York

Catherine Ricardo, Computer Information Sciences, lona College

Judith E. Sullivan, CSIS Alumna, MS in CS from Pace--Westchester
Sylvester Tuohy, Computer Science, Pace--Westchester

The School of Computer Science and Information Systems, through the Technical Report Series,
provides members of the community an opportunity to disseminate the results of their research
by publishing monographs, working papers, and tutorials. Technical Reports is a place where
scholarly striving is respected.

All preprints and recent reprints are requested and accepted. New manuscripts are read by two
members of the editorial board: the editor decides upon publication. Authors, please note that
production is Xerographic from your submission. Statements of policy and mission may be found
in issues #29 (April 1990) and #34 (September 1990).

Please direct submissions as well as requests for single copies to:

Allen Stix
The lvan G. Seidenberg School of Computer Science and Information Systems
Goldstein Academic Center
Pace University
861 Bedford Road
Pleasantville, NY 10570-2799

	Pace University
	DigitalCommons@Pace
	4-1-2006

	Implementation of Graphs Using java.util Part Two: Weighted Graphs, Spanning Trees, and Shortest Paths
	Nicholas J. De Lillo
	Recommended Citation

